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Abstract

A general solution of the vibration of an Euler–Bernoulli beam with arbitrary type of discontinuity at arbitrary number

of locations is presented in this paper. To account for the discontinuity term induced by various additional elements on the

beam, Heaviside’s function is used to express the modal displacement of the whole beam by a single function. This general

modal displacement function is then solved by using Laplace transformation. This general solution consists of four types of

basic modal shapes induced by four corresponding types of discontinuity terms at the discontinuity points. Various

discontinuity terms are obtained and expressed by the boundary values of the modal displacement in a recursive way.

Consequently, the modal displacement can be determined by examining only the conditions on the boundary. In such a

way, the present solution reduces the vibration of beams with arbitrary discontinuities to the same order of the case

without discontinuity point. To demonstrate the efficiency and applicability of the present method, three application

examples are presented. Calculation example shows that the lead–zirconate–titanate (PZT) actuator should be placed as

close to the fixed end as possible to achieve the best excitation effect on a cantilever beam. A new method to calculate the

driving-point anti-resonance frequency is also proposed. Numerical results suggest that the variation of driving-point anti-

resonance frequency can be used to determine the location and size of crack in beams. Due to the generic nature of the

solution and the problem, the present method can be utilized in smart structures modeling and structural health

monitoring of beam-type structures.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Structural health monitoring is one of the most important keys in maintaining safety and integrity of
structures and avoiding loss of human life and/or monetary loss due to the catastrophic failure of structures.
Among many structural health-monitoring techniques, the dynamic response-based damage detection method
[1] attracts most attention due to its simplicity for implementation. This technique makes use of the dynamic
response of structures, which offers unique information on the defects contained with these structures.
Changes in the physical properties of the structures due to damage can alter the dynamic response, such as the
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natural frequency and mode shape. These physical parameter changes can be extracted to predict damage
information, such as the presence, location and severity of damage in a structure.

As a basis of dynamics-based structural health monitoring technique, free vibration of beams with cracks
has been under extensive examination in the last three decades [1–7]. Many crack models have been proposed
in the literature to simulate the effect of cracks on the dynamic behavior of beams [7]. A thorough survey of
the state-of-the-art of the vibration of cracked structures was given by Diamarogonas [7]. Among those crack
models, local flexibility model is used most widely. In this model, the local flexibility induced by a transverse
edge crack to the beam is simulated by a rotational spring at the location of the crack [2]. The stiffness of this
spring is evaluated by use of fracture mechanics method [2]. In this way, a discontinuity of slope is introduced
at the location of the crack. To formulate the free vibration of the cracked beam, a common approach used in
the literature is to divide the beam into two sub-beams and different modal displacement functions are used
for each sub-beam. As shown in the following text, the governing equation of modal displacement for an
Euler–Bernoulli beam is fourth order. Therefore, eight unknown coefficients exist in the expressions of modal
displacement of the cracked beam (four for each sub-beam) [2,3]. To determine these unknowns, four
boundary conditions and four continuity conditions at the location of the crack have to be employed. As a
result, the eigenvalue equation of the problem is expressed as an eighth-order determinant equated to zero. In
the case of n cracks in the beam, the order of the determinant increases to 4(n+1) [3]. It is extremely difficult to
find the root of such a higher-order transcendental equation. Therefore, recent research focused on finding
more efficient approaches to simulate the free vibration of beams with multiple cracks. Shifrin and Ruotolo [4]
developed a new method which reduces the order of the determinant for a beam with n cracks from order of
4(n+1) drastically to order of (n+2). Based on this approach, Li [5] further reduced the determinant to order
of 2 through a recursive formula. By using the transfer matrix method, Khibm and Lien [6] reduced the order
of the determinant to order of 4. It should be pointed out that the local flexibility method adopted in above
studies suffers from many limitations. As discussed in detail by Dimarogonas and Chondos [8] and Chondros
[9], it is difficult to relate flaw position and size with stiffness change due to the fact that the crack-induced
modification of the stress field decays with the distance from the crack.

The above studies are limited to the case of transverse crack (rotational spring), which is just one of many
types of discontinuities for beams. In civil and mechanical engineering, there are many types of additional
elements such as intermediate resilient support, rigid or elastic spring-mass system, internal hinge, etc., or any
arbitrary combination of them, existing at several locations along a beam. At the locations of these additional
elements, different discontinuities are induced complicating the analysis of the vibration of the beam. Similar
to the case of multiple cracked beam, Bapat and Bapat [10] found that the eignevalue equation for a beam with
n additional elements is given by letting a 4(n+1)th-order determinant to be zero. To avoid the difficulty
encountered in solving higher order eigenvalue equation, the approximated methods were usually employed in
the literature [11–15]. By using a group of fundamental solutions for a segment of beam, Li [16] presented an
analytical solution to the free vibration of nonuniform beams for several discontinuity cases. This method was
essentially an extension of Shifrin and Ruotolo’s approach [4].

It should be pointed out that there is only one discontinuity for most additional elements studied in the
literature. For instance, only the slope is discontinuous at the location of an elastic rotational spring; while
other parameters, such as deflection, curvature and the shear force are continuous. Shifrin and Ruotolo’s
approach [4] took the advantage of this feature and accounted for only the discontinuity term by using general
functions (Heaviside or Dirac delta function). While in a conventional approach outlined in Ref. [3], four
continuity conditions were established at each discontinuity point. Obviously, three of them (continuity
conditions of displacement, curvature (bending moment), and the third order derivative of the displacement
(shear force)) are redundant.

Although the solutions are available in the literature for the vibration of beams with some special
discontinuities, there is no general solution to account for arbitrary combinations of discontinuities and
boundary conditions. In this study, an attempt is made to develop such a solution. Similar to Shifrin and
Ruotolo’s approach [4], general functions (Heaviside and Dirac delta functions) are used to account for the
discontinuity induced by the additional elements. Unlike in Ref. [3] where different functions are used for each
segment of the beam, only a general displacement function is used in this study to describe the whole beam.
This general function technique is developed by Yavari [17,18] in studying static response of beams with
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multiple discontinuities. It can be seen that the available solutions [4,5,16] are special cases of the present
general solution. The present solution can be used conveniently not only to free vibration, but also to forced
vibration of beams with arbitrary discontinuities and boundary conditions.

This paper is arranged as follows. The general solution of the modal displacement of a beam with arbitrary
discontinuities is derived first using general function. Continuity conditions at the locations of additional
elements are then derived for a variety of additional elements on beams. To demonstrate the applicability and
efficiency of the general solution, three important problems in smart structures modeling and damage
detection are solved by the present method. Some new light shed on the effect of transverse cracks on the
dynamic behavior of beams is also discussed.

2. General solution

2.1. Vibration of beams with one discontinuity point

An Euler–Bernoulli beam under general boundary conditions as shown in Fig. 1 is examined in this section.
For the convenience of formulation, only one discontinuity point at x1 is considered on the beam dividing the
beam into segments I and II, respectively (Fig. 1). The discontinuity term at this point can be the deflection,
slope, curvature, the third order derivative of the deflection, or any combination of above four terms. All four
discontinuity terms are considered in the formulation to account for all possible discontinuity configurations
at x1. A commonly used approach to the vibration of this beam is to consider segments I and II separately
[2,3]. In this way, the equations of motion of each segment read

EIw00001 ðx; tÞ þ rA €w1ðx; tÞ ¼ 0, (1)

EIw00002 ðx; tÞ þ rA €w2ðx; tÞ ¼ 0, (2)

where w1(x, t) and w2(x, t) are the transverse deflections of the segments I and II, respectively; the prime and
dot over wi (i ¼ 1, 2) are the derivatives of the transverse deflection with respect to x and t, respectively; E and
I are the Young’s modulus and moment inertia of the beam; r and A are the density and cross-section area of
the beam, respectively. Noting that Eqs. (1) and (2) are the fourth order differential equations, four boundary
and four continuity conditions at x1 are needed to determine eight coefficients of the modal deflection
functions (i.e., w1(x, t) and w2(x, t)). If there are n discontinuity points on the beam, the total number of
coefficients to be determined becomes 4(n+1), which leads to solve 4(n+1) equations simultaneously [3,10].
In such a case, the difficulty in calculation increases dramatically and ‘‘in general y can be very complex even
for n ¼ 2’’ as pointed out by Gugoze [19]. To avoid this difficulty, an alternative approach is developed in
this study in which the deflection of the whole beam is expressed in term of a single function. To facilitate
this aim, let

Dwðx; tÞ ¼ w2ðx; tÞ � w1ðx; tÞ, (3)

then

wðx; tÞ ¼ w1ðx; tÞ þ Dwðx; tÞHðx� x1Þ, (4)

where w(x, t) is the deflection function of the whole beam, which is a generalized function with discontinuities
at location x1. H(x�x1) is Heaviside function which jumps from zero to unit at location x1. Differentiating
x1

x

z
Discontinuity point

III

Fig. 1. An Euler–Bernoulli beam with single discontinuity point at x1.
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both sides of Eq. (4) with respect to x, we have

w0ðx; tÞ ¼ w01ðx; tÞ þ Dw0ðx; tÞHðx� x1Þ þ Dwðx1; tÞdðx� x1Þ, (5)

w00ðx; tÞ ¼ w001ðx; tÞ þ Dw00ðx; tÞHðx� x1Þ þ Dw0ðx1; tÞdðx� x1Þ þ Dwðx1; tÞd
0
ðx� x1Þ (6)

w000ðx; tÞ ¼ w0001 ðx; tÞ þ Dw000ðx; tÞHðx� x1Þ þ Dw00ðx1; tÞdðx� x1Þ þ Dw0ðx1; tÞd
0
ðx� x1Þ

þ Dwðx1; tÞd
00
ðx� x1Þ, ð7Þ

w0000ðx; tÞ ¼ w00001 ðx; tÞ þ Dw0000ðx; tÞHðx� x1Þ þ Dw000ðx1; tÞdðx� x1Þ þ Dw00ðx1; tÞd
0
ðx� x1Þ

þ Dw0ðx1; tÞd
00
ðx� x1Þ þ Dwðx1; tÞd

000
ðx� x1Þ, ð8Þ

where d(x�x1) is Dirac delta function. Combining Eqs. (1) and (2) gives

w00001 ðx; tÞ þ
rA

EI
€w1ðx; tÞ þ w00002 ðx; tÞ þ

rA

EI
€w2ðx; tÞ � w00001 ðx; tÞ þ

rA

EI
€w1ðx; tÞ

� �� �
Hðx� x1Þ ¼ 0. (9)

Rearranging Eq. (9) leads to

w00001 ðx; tÞ þ Dw0000ðx; tÞHðx� x1Þ ¼ �
rA

EI
€w1ðx; tÞ þ D €wðx; tÞHðx� x1Þð Þ. (10)

Substituting Eq. (10) into Eq. (8) yields

w0000ðx; tÞ þ
rA

EI
€wðx; tÞ ¼ Dw000ðx1; tÞdðx� x1Þ þ Dw00ðx1; tÞd

0
ðx� x1Þ þ Dw0ðx1; tÞd

00
ðx� x1Þ

þ Dwðx1; tÞd
000
ðx� x1Þ. ð11Þ

Eq. (11) gives the equation of motion of the Euler–Bernoulli beam with discontinuities in term of general
equation w(x,t).

Considering free vibration or harmonic forced vibration, Eq. (11) can be solved through variable separation
method. Let

wðx; tÞ ¼W ðxÞ sinðotÞ, (12)

where W(x) is the modal displacement of the beam. Substituting Eq. (12) into Eq. (11), we have

W 0000ðxÞ �
rAo2

EI
W ðxÞ ¼ DW 000ðx1Þdðx� x1Þ þ DW 00ðx1Þd

0
ðx� x1Þ þ DW 0ðx1Þd

00
ðx� x1Þ

þ DW ðx1Þd
000
ðx� x1Þ. ð13Þ

Applying Laplace transform to Eq. (13) yields

W ðsÞ ¼
s3

s4 � l4
W ð0Þ þ

s2

s4 � l4
W 0ð0Þ þ

s

s4 � l4
W 00ð0Þ þ

1

s4 � l4
W 000ð0Þ þ

s3 e�sx1

s4 � l4
DW ðx1Þ

þ
s2 e�sx1

s4 � l4
DW 0ðx1Þ þ

s e�sx1

s4 � l4
DW 00ðx1Þ þ

e�sx1

s4 � l4
DW 000ðx1Þ, ð14Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrAo2=EIÞ4

p
. Note that

L�1
1

s4 � l4

� �
¼

1

2l3
sinhðlxÞ � sinðlxÞð Þ ¼

S3ðlxÞ

l3
,

L�1
s

s4 � l4

� �
¼

1

2l2
coshðlxÞ � cosðlxÞð Þ ¼

S2ðlxÞ

l2
,

L�1
s2

s4 � l4

� �
¼

1

2l
sinhðlxÞ þ sinðlxÞð Þ ¼

S1ðlxÞ

l
,

L�1
s3

s4 � l4

� �
¼

1

2
coshðlxÞ þ cosðlxÞð Þ ¼ S0ðlxÞ. ð15Þ
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The modal displacement W(x) can then be easily obtained by applying inverse Laplace transform on
Eq. (14) as

W ðxÞ ¼W ð0ÞS0ðlxÞ þ
W 0ð0Þ

l
S1ðlxÞ þ

W 00ð0Þ

l2
S2ðlxÞ þ

W 000ð0Þ

l3
S3ðlxÞ

þ DW ðx1ÞS0 lðx� x1Þð Þ þ
DW 0ðx1Þ

l
S1 lðx� x1Þð Þ þ

DW 00ðx1Þ

l2
S2 lðx� x1Þð Þ

�

þ
DW 000ðx1Þ

l3
S3 lðx� x1Þð Þ

�
Hðx� x1Þ. ð16Þ

2.2. Vibration of beams with multiple discontinuity points

The above formulation for a beam with a single discontinuity point can be easily extended to a beam with
multiple discontinuity points as one shown in Fig. 2. In Fig. 2, an Euler–Bernoulli beam is divided into n+1
segments by n discontinuity points. These discontinuity points can be caused by an applied pointed shear
force, a bending moment, an intermediate support, an attached concentrated mass, or a transverse edged crack
on the beam. By using general function, the deflection of the cracked beam can be written as

wðx; tÞ ¼ w1ðx; tÞ þ
Xn

i¼1

wiþ1ðx; tÞ � wiðx; tÞð ÞHðx� xiÞ, (17)

where wi(x, t) is the deflection of the ith segment of the beam; xi is the location of the ith discontinuity point.
Following the similar procedure in the above section, the equation of motion of this beam is obtained as

w0000ðx; tÞ þ
rA

EI
€wðx; tÞ ¼

Xn

i¼1

X3
j¼0

w
ðjÞ
iþ1ðxi; tÞ � w

ðjÞ
i ðxi; tÞ

� �
dð3�jÞ
ðx� xiÞ. (18)

By using Eq. (12), the governing equation of mode shape becomes

W 0000ðxÞ �
rAo2

EI
W ðxÞ ¼

Xn

i¼1

X3
j¼0

W
ðjÞ
iþ1ðxiþÞ �W

ðjÞ
i ðxi�Þ

� �
dð3�jÞ
ðx� xiÞ. (19)

Following the same approach described in the above section, we have

W ðxÞ ¼
XN

i¼0

Hðx� xiÞ
X3
j¼0

DW ðjÞðxiÞ

lj
Sj lðx� xiÞð Þ. (20)

Eq. (20) expresses the modal displacement of the whole beam with n discontinuity points by a single
function W(x). In this way, a beam with multiple discontinuity points can be treated as one without any
discontinuity point. The difficulty experienced in the commonly used approach [3,10] can thus be avoided.
Note that x1, which is zero in the coordinate system of Fig. 2, is the location of the left boundary of the beam.
Eq. (20) suggests that the boundary of the beam is also a discontinuity point of the beam. Each discontinuity
term at a given location introduces a basic shape function starting at that point. The total modal displacement
of the beam W(x) is essentially the superposition of all these basic functions.
P M 

KR

KT KS

KV Km

mi

x 

z 

Fig. 2. Euler–Bernoulli beam with multiple discontinuity points.
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3. Discontinuities

There are totally 4(n+1) unknown discontinuity terms in Eq. (20) to be determined by four boundary and 4n

continuity conditions (four continuity conditions at each of these n discontinuity points). It rarely occurs that
all four possible discontinuity terms exist simultaneously at a discontinuity point. In most practical cases, only
one is nonzero at internal discontinuity points and two are nonzero at boundary discontinuity points. If these
nonzero discontinuity terms are obtained by the boundary values of the modal displacement, the modal
displacement can be simply determined through the boundary conditions as in the case of no discontinuities.

3.1. Concentrated harmonic loads

If a concentrated harmonic force Pi is applied at xi as shown in Fig. 3(a), the only nonzero discontinuity
term is DW000(xi). The equilibrium condition at this point requires

PðxiþÞ � Pðxi�Þ ¼ Pi. (21)

Considering the constitutive law of the Euler–Bernoulli beam, we have

W 000
iþ1ðxiþÞ �W 000

i ðxi�Þ ¼ DW 000ðxiÞ ¼
Pi

EI
. (22)

Following the similar procedure, the only discontinuity induced by a harmonic concentrated bending
moment Mi at xi (Fig. 3(b)) is given by

W 00
iþ1ðxiþÞ �W 00

i ðxi�Þ ¼ DW 00ðxiÞ ¼
Mi

EI
. (23)

3.2. Intermediate attachments

Free vibration of an Euler–Bernoulli beam with attachments has been studied by many researchers
[10–16,20–22]. Different discontinuities are introduced to the modal displacement by various attachments.
Exact solutions available in the literature are quite complex when more than two intermediate attachments are
involved [19].

Fig. 4(a) shows an elastic translational spring with stiffness KVi at xi, which can be used to simulate the
intermediate support of a continuous beam. Due to the deformation of the beam at xi, a reaction force PRi is
generated at xi and given by

PRi ¼ KViW ðxiÞ. (24)

Considering Eq. (22), the only discontinuity term at this location is given by

DW 000ðxiÞ ¼ �
1

EI
KViW ðxiÞ. (25)

Specifically, if KVi is infinite, the elastic support becomes a roller support (Fig. 4(b)). In such a case, DW000(xi)
cannot be determined by Eq. (25) any more. However, an extra condition at xi can be used

W ðxiÞ ¼ 0. (26)
PP

M

Mi

M+Mi M+MiM

(a) (b)

Pi P+PiP

M
M MM

P

P+Pi

Fig. 3. Discontinuity induced by applied load: (a) concentrated shear force; and (b) concentrated bending moment.
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(b)

( )xiWKviPRi =

Km

mi

(       )W − ZKmPm =

W '(x1)KRiMRi =

(c)

(d)

(e)

(f)

Fig. 4. Discontinuities induced by intermediate attachments: (a) elastic translational spring support; (b) extreme condition of (a) roller

support; (c) elastic rotational spring support; (d) extreme condition of (d) fixed rotation; (e) spring–mass system; and (f) concentrated mass

particle.
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Fig. 4(c) shows an elastic rotational spring existing at xi. In this case, a reaction bending moment generated
by the support at xi reads

MRi ¼ KRiW
0ðxiÞ. (27)

By using Eq. (23), the only discontinuity exists at this point is given by

DW 00ðxiÞ ¼
1

EI
KRiW

0ðxiÞ. (28)

Particularly, if KRi is infinite (Fig. 4(d)), no rotation is allowed at xi. In such a case, the discontinuity term
cannot be determined by Eq. (29). Instead, we have

W 0ðxiÞ ¼ 0. (29)

Fig. 4(e) describes a uniform Euler–Bernoulli beam carrying a mass particle at xi through an elastic spring
with stiffness Km. The free vibration of such a beam has been studied by many researchers [5,11,15,23]. Such
a spring-mass system can be replaced by a translational spring with the effective spring constant KVi given
by [23]

KVi ¼
�Kmmio2

Km �mio2
. (30)

The discontinuity is given by Eq. (25). If the concentrated mass mi is directly attached to the beam, as shown
in Fig. 4(f), Km is infinite. In such a case, KVi reduces to

KVi ¼ �mio2. (31)

3.3. Internal elastic connector

The free vibration of cracked beams has been studied extensively during the last decade [1–6,25–27] due to
its application in damage detection of beams. Extra local bending and transverse flexibility can be induced at
the vicinity of the tip of the transverse crack due to the severe strain energy concentration. A rotational spring
shown in Fig. 5(a) is usually used to simulate the effect of the crack on the dynamic behavior of the beam [2].
This model is based on the following assumptions: (a) the crack changes only the stiffness of the beam and the
mass of the beam is unchanged, (b) the crack is always open, and (c) only the local bending flexibility is
considered and axial and transverse flexibilities are neglected. The stiffness of the spring is determined by
relating the local flexibility to the strain energy concentration at the vicinity of the crack tip through the
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KTi

KSi

(a)

(b)

(c)

(d)

Fig. 5. Internal elastic connector: (a) massless rotational spring; (b) internal hinge; (c) massless translational spring; and (d) internal shear

guide.
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principle of fracture mechanics and given by [2] as

KT ¼
1

c
¼ 5:346

h

EI
f

a

h

� �
, (32)

where h and a are the thickness of the beam and the depth of the crack, respectively; and f(a/h) is a
nondimensional parameter determined by the crack geometry [2]

f
a

h

� �
¼ 1:8624

a

h

� �2
� 3:95

a

h

� �3
þ 16:37

a

h

� �4
� 37:226

a

h

� �5
þ 76:81

a

h

� �6
� 126:9

a

h

� �7
þ 172

a

h

� �8
� 143:97

a

h

� �9
þ 66:56

a

h

� �10
. ð33Þ

Eq. (33) requires that the crack is open, which is not always true. As a matter of fact, the transverse crack
can also open and close regularly (breath), or always close depending on the different loads applied on the
beam, as discussed in details by Chondros et al. [28,29]. In such cases, more complicated models such as the
breathing crack model [28,29] should be used.

By using the rotational spring model, only the slope of the beam is discontinuous at this point. Considering
the rotation-moment relationship of the spring, we have

DW 0ðxiÞ ¼
EI

KTi

W 00ðxiÞ. (34)

Cautions should be taken in using Eq. (34) to simulate the effect of a transverse crack because it is derived
based on a few assumptions aforementioned. In the case that those assumptions are not valid, using Eq. (34)
can lead to gross errors. When KTi is zero, we have an internal hinge in the beam (Fig. 5(b)). In this case, the
slope discontinuity cannot be obtained through Eq. (34). Instead, we have

W 00ðxiÞ ¼ 0. (35)

The translational spring is used to simulate the local transverse flexibility induced by a crack (Fig. 5(c)). This
spring introduces a discontinuity of deflection at xi as

DW ðxiÞ ¼
EI

KSi

W 000ðxiÞ. (36)

Specifically, if the stiffness KSi is zero (Fig. 5(d)), we have a case of internal shear guide (shear free)

W 000ðxiÞ ¼ 0. (37)

At this point, it can be found that all the discontinuities discussed above can be expressed by the applied
load and boundary values of the modal displacement.

3.4. Boundary conditions

As aforementioned, the boundaries are nothing but discontinuity points at the ends of the beam. General
boundary conditions shown in Fig. 2 can be obtained by combining an elastic translational spring (Fig. 4(a))
and an elastic rotational spring (Fig. 4(c)). In such a case, all four discontinuities on the boundary are nonzero.
While for the common boundary conditions listed in Table 1, only two are nonzero.
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Table 1

Common boundary conditions for Euler–Bernoulli beams

Support type Zero terms Nonzero terms

Fixed W, W 0 W 00, W 000

Pinned W, W 00 W 0, W 000

Free W 00, W 000 W, W 0

Guided W 0, W 000 W, W 00

J. Wang, P. Qiao / Journal of Sound and Vibration 308 (2007) 12–2720
In the previous sections, the discontinuity terms at internal discontinuity points have been expressed in term
of the discontinuity terms at the boundary point in a recursive formula. Combining Table 1 and the
expressions of discontinuities obtained above in term of boundary values of the modal displacement, only two
unknowns remain in the modal displacement, which can be easily determined by boundary conditions at the
right end of the beam. As a result, tremendous effort of computation and cost associated with dynamic
analysis of beams with discontinuities can be saved.

4. Application examples

To demonstrate the efficiency and applicability of the proposed method, vibration of Euler–Bernoulli beams
with various commonly encountered discontinuities is solved in this section.

4.1. Vibration of cantilever beam using lead– zirconate– titanate (PZT) actuator

PZT ceramic patch is lightweight and thin piezoelectric material, which can be used as actuators and sensors
in smart structures [24]. In Fig. 6, a PZT patch is externally bonded to a cantilever beam as an actuator. Two
concentrated bending moments generated by applying a proper voltage to the PZT patch are applied to the
beam at the ends of the PZT patch, as shown by Wang and Wang [24] (Fig. 6). In the case of harmonic
vibration, the modal displacement of the cantilever beam can be written as

W ðxÞ ¼
W 00ð0Þ

l2
S2ðlxÞ þ

W 000ð0Þ

l3
S3ðlxÞ þ

M0

EIl2
S2 lðx� x1Þð ÞHðx� x1Þ

�
M0

EIl2
S2 lðx� x1 � lÞð ÞHðx� x1 � lÞ, ð38Þ

where M0 is the moment applied to the beam by the PZT actuator; x1 is the location of the left end of the PZT
patch; l is the length of the actuator. Note that only two unknowns, i.e., W00(0) and W000(0), in Eq. (38), which
can be easily determined by the boundary condition at the free end

W 000ðLÞ ¼ 0; W 00ðLÞ ¼ 0. (39)

The dynamic response of the beam under harmonic unit bending moment applied by the PZT actuator with
l ¼ 2 and l ¼ 0.02L is presented in Fig. 7. Fig. 7(a) shows that the location of the actuator has significant
effect on the deformation of the beam. The deflection of the beam is larger if the actuator is closer to the fixed
end of the beam. This trend is further confirmed by Fig. 7(b), in which the curvature shapes of beam are
obtained for three different actuator locations. Except at the location of the actuator where the curvature is
much higher due to the bending moment applied by the actuator, the curvature is higher when the actuator is
closer to the fixed end. Such a phenomenon suggests that in order to achieve better excitation effect, the PZT
actuator should be placed as close to the fixed end in a cantilever configuration as possible.

4.2. Free vibration of cantilever beam with multiple-cracks

As aforementioned, the free vibration of a beam with multiple cracks has been studied extensively
[1–7,25–27] due to its application in damage detection. By using Eq. (20), the modal shape of the beam is
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Fig. 7. Dynamic response of the cantilever beam under PZT actuator: (a) modal displacement; and (b) modal curvature. x1 ¼ 0.1,
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Fig. 6. Cantilever beam excited by a PZT actuator.
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derived as

W ðxÞ ¼W ð0ÞS0ðlxÞ þ
W 0ð0Þ

l
S1ðlxÞ þ

W 00ð0Þ

l2
S2ðlxÞ þ

W 000ð0Þ

l3
S3ðlxÞ

þ
Xn

i¼1

EIW 00ðxiÞ

KTil
S2 lðx� xiÞð ÞHðx� xiÞ. ð40Þ

In Eq. (40), only four discontinuities at the left boundary need to be determined. For a cantilever beam with
two cracks studied by Ruotolo et al. [26], Eq. (40) can be simplified as

W ðxÞ ¼
W 00ð0Þ

l2
S2ðlxÞ þ

W 000ð0Þ

l3
S3ðlxÞ þ

EIW 00ðx1Þ

KT1l
S2 lðx� x1Þð ÞHðx� x1Þ

þ
EIW 00ðx2Þ

KT2l
S2 lðx� x2Þð ÞHðx� x2Þ. ð41Þ
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Considering boundary conditions at the free end (Eq. (39)), we have

a11 a12

a21 a22

 !
W 00ð0Þ

W 000ð0Þ

 !
¼

0

0

� �
, (42)

where ki ¼ ET/KTi and

a11 ¼ S002ðlLÞ þ k1lS001 lðL� x1Þð ÞS002ðlx1Þ þ k2lS001 lðL� x2Þð Þ S002ðlx2Þ þ k1lS001 lðx2 � x1Þð ÞS002ðlx1Þ
	 


,

a12 ¼ S002ðlLÞ
1

l
þ k1S

00
1 lðL� x1Þð ÞS003ðlx1Þ þ k2S

00
1 lðL� x2Þð Þ S003ðlx2Þ þ k1lS001 lðx2 � x1Þð ÞS003ðlx1Þ

	 

,

a21 ¼ S0002 ðlLÞ þ k1lS0001 lðL� x1Þð ÞS002ðlx1Þ þ k2lS0001 lðL� x2Þð Þ S002ðlx2Þ þ k1lS001 lðx2 � x1Þð ÞS002ðlx1Þ
	 


,

a22 ¼ S0002 ðlLÞ
1

l
þ k1S0001 lðL� x1Þð ÞS002ðlx1Þ þ k2S

000
1 lðL� x2Þð Þ S002ðlx2Þ þ k1lS001 lðx2 � x1Þð ÞS002ðlx1Þ

	 

. ð43Þ

The natural frequency of the beam given by the root of the following equation:

a11a22 � a12a21 ¼ 0. (44)

The natural frequencies of the beam in Fig. 8 was obtained by Ruotolo et al. [26] by using the so-
called ‘‘continuous model’’. The following properties are used in the calculation: length L ¼ 0.8m, rect-
angular cross-section with width b ¼ 0.02m and height h ¼ 0.02m, a first crack with position x1 ¼ 0.12m
and depth a1 ¼ 2mm, a second crack with variable position from the clamped to the free end and a depth
of 2, 4, and 6mm. The first three frequencies of this beam (o) are obtained by Eq. (44) and normalized
by the frequencies without crack (o0) for different location of x2 and presented in Fig. 9. As a comparison
and verification, the values obtained by Ruotolo et al. [26] are also presented in Fig. 9. It can be seen that
excellent agreements of the present solution and the ones in Ref. [26] have been achieved for all the cases
studied.

4.3. Driving-point anti-resonance frequency of cracked beam

Driving-point anti-resonance frequency has gained attention recently for its potential application in damage
detection [30,31]. Bamnious, Douka and Trochidis [31] demonstrated that a crack in a beam could be
identified by a sharp jump in the slope of the curve of the driving point anti-resonance frequency verse the
measuring position. To obtain the driving-point anti-resonance frequencies of a cracked cantilever beam
shown in Fig. 10(a), a forced vibration problem shown in Fig. 10(b) is first solved by Bamniou et al. [31], based
on which the anti-resonance frequency is then obtained. The commonly used approach was adopted in
x1

x2

x1

x KT1

L 

(a)

(b)

KT2

x2

L 

Fig. 8. Cantilever beam with two cracks: (a) cracked cantilever beam; (b) equivalent rotational spring model.
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Bamnious et al. [31], which led to determination of 12 unknown coefficients simultaneously. If the present
solution in Eq. (20) is used, the modal displacement is simplified as

W ðxÞ ¼
W 00ð0Þ

l2
S2ðlxÞ þ

W 000ð0Þ

l3
S3ðlxÞ þ

W 00ðx1Þ

Ktl
2

S2 lðx� x1Þð ÞHðx� x1Þ

þ
P

EIl2
S3 lðx� x2Þð ÞHðx� x2Þ. ð45Þ

In this way, only two unknown coefficients exist which can be determined by the boundary conditions at the
free end given by Eq. (39). The driving-point anti-resonance of the beam is then obtained by the location of
peak values on the impedance-frequency curve.

To avoid the tedious task of calculating the whole impedance curve, an alternative method is proposed
in the present study, which can provide the driving-point anti-resonance frequency of a cracked beam
directly and accurately. Note that the driving-point anti-resonance frequencies correspond to the mode fre-
quencies of the structure with the driving point degree-of-freedom restrained to ground. Therefore, to find
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the driving-point anti-resonance frequencies of a cracked cantilever beam of Fig. 10(a) at x2 is equivalent to
obtain the natural frequencies of the same beam with a roller support at x2 (Fig. 10(c)). In this case, the modal
shape is given by

W ðxÞ ¼
W 00ð0Þ

l2
S2ðlxÞ þ

W 000ð0Þ

l3
S3ðlxÞ þ

EIW 00ðx1Þ

KTl
2

S2 lðx� x1Þð ÞHðx� x1Þ

þ
W 000ðx2Þ

EIl2
S3 lðx� x2Þð ÞHðx� x2Þ. ð46Þ

To determine the three unknown coefficients in Eq. (46), besides two boundary conditions at the free end
given by Eq. (39), the following condition at x2 is employed

W ðx2Þ ¼ 0. (47)

The first natural frequencies obtained by the above solution and first driving-point anti-resonance
frequencies experimentally measured by Barmnios et al. [31] for a plexigal cantilever beam of which
L ¼ 35mm, b� h ¼ 2� 2 cm are presented in Fig. 11. A saw-cut with depth a at 15 cm from the fixed end is
used to simulate damage. Three different depths of the crack are considered in Fig. 11, i.e., a/h ¼ 0.4,
a/h ¼ 0.6, and a/h ¼ 0.8. It can be observed that the anti-resonance frequency of the beam decreases with the
size of the crack. An interesting feature of Fig. 11 is that there is a jump in the slope of the curve of the driving-
point anti-resonance frequency verse the location. Such a jump indicates the existence and location of the
crack on the beam. This phenomenon is further demonstrated in Fig. 12 in which the change of anti-resonance



ARTICLE IN PRESS

0

50

100

150

200

250

300

0 0.2 0.4 0.6

x/L

fr
e

q
u

e
n

c
y
 (

 H
z
)

Fig. 11. Comparison of driving-point anti-resonance frequency obtained by the present theoretical method and the experimental data

in Ref. [31]. & experimental, a/h ¼ 0; theoretical, a/h ¼ 0; experimental, a/h ¼ 0.4; theoretical, a/h ¼ 0.4;

experimental, a/h ¼ 0.6; theoretical, a/h ¼ 0.6; experimental, a/h ¼ 0.8; and theoretical, a/h ¼ 0.8.

J. Wang, P. Qiao / Journal of Sound and Vibration 308 (2007) 12–27 25
frequencies induced by the crack is presented with the location of the driving-point for the first three modes.
As expected, there is a sharp peak appearing at the location of the crack on all these curves corresponding
to the different magnitudes of the damage (i.e., the depth of crack). It can be observed that the reduction of
anti-resonance frequencies is higher if the crack size is larger. Such a relationship may be used to quantify the
size of crack.
5. Conclusions

In the study, vibration of an Euler–Bernoulli beam with various additional elements is addressed, and
applications of the solution to smart structures modeling and damage detection of beam-type structures are
demonstrated. Various discontinuities can be induced to the modal displacement of the beam at the locations
of these additional elements. Unlike the commonly used approach in the literature, only a single function is
used to describe the modal displacement of the whole beam by using Heaviside’s function to account for
discontinuities. The obtained modal displacement consists of the basic modal shapes induced by the
discontinuities at the discontinuity points. This solution can account for arbitrary number and type of
discontinuity points on a beam by expressing the discontinuities in term of boundary values of the modal
displacement through a recursive way. Consequently, the complexity of the vibration is reduced to the same
order of a beam without any discontinuity points.

Three examples are further presented in this study to verify and demonstrate the efficiency and applicability
of the present method. The harmonic vibration of a cantilever beam with smart materials (e.g., PZT actuator)
shows that the actuator should be placed as close as possible to the fixed end of the beam in order to achieve
maximized excitation result. An exact analytical method is also presented to calculate the driving-point anti-
resonance frequency of cracked beam. It has been shown that the crack location and size may be determined
by the anti-resonance frequency.

It is very difficult to present and compare results for all cases of the dynamic behavior of smart structures
with flaws because there are so many parameters that can be varied in the vibration of the structures. More
complicated situations of dynamic behavior of this type of damaged structures, such as coupled flexural and
longitudinal vibration, will be subjects of our future study. Nevertheless, the general approach and solution
presented in this study provides an efficient tool to study and analyze the dynamic behavior of beam-type of
smart structures.
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